
Egyptian Computer Science Journal Vol.30 No3 September 2008

 1

ITARM: Incremental Temporal Association Rules Mining

Mohamed Taha1, Hamed Nassar1, Tarek F. Gharib2

1 Faculty of Computers & Informatics, Suez Canal University, Ismaillia, Egypt

2 Faculty of Computer & Information Science, Ain Shams University, Cairo, Egypt
tgharib@asunet.shams.edu.eg

Abstract

A temporal association rule is an association rule that holds during specific time intervals. Temporal databases contain
rich information that can be extracted by knowledge discovery and data mining techniques. Some algorithms were proposed
for mining temporal association rules. In the real world, temporal databases are continually appended or updated so the
discovered rules need to be updated. Re-running the temporal mining algorithm every time is inefficient since it ignores the
previously discovered rules, and repeats the work done previously. Also, existing incremental mining techniques cannot deal
with temporal association rules. In this paper, an incremental algorithm to maintain the temporal association rules in the
transaction database is proposed. The algorithm exploits the results of earlier mining to derive the final mining output. The
results show a significant improvement over the traditional approach of mining the whole updated database.

Keywords: TAR, Incremental Temporal Mining, Updating Temporal Association Rules, Temporal Mining

1. Introduction

Data mining is the process of extracting interesting (non-trivial, implicit, previously unknown and potentially
useful) information or patterns from large information repositories and it is known as one of the core processes
of Knowledge Discovery in Database (KDD) [1]. Data mining techniques include association rules mining,
classification, clustering, mining time series, and sequential pattern mining, to name a few, with association rules
mining receiving a significant research attention [2].

Many algorithms for discovering association rules in transaction databases have been developed and widely
studied: the Apriori and its variations, partitioning, sampling, TreeProjection, and FP-growth algorithms [3, 4,
5]. Furthermore, other variants of mining algorithms are presented to provide more mining capabilities, such as
incremental updating, mining of generalized and multi-level rules, mining of quantitative rules, mining of multi-
dimensional rules, constraint-based rule mining, mining with multiple minimum supports, mining associations
among correlated or infrequent items, and mining of temporal association rules [2].

Recently, temporal data mining has become a core technical data processing technique to deal with changing
data. Temporal data exist extensively in economical, financial, communication, and other areas such as weather
forecasting [6]. Temporal Association Rules (TAR) is an interesting extension to association rules by including a
temporal dimension. When considering the time dimension, this will lead to extract different forms of
association rules such as discovering association rules that may hold during some time intervals but not during
others [7].

Different methodologies have been proposed to explore the problem of discovering temporal association
rules. In the early work, discovering association rules is performed from a given subset of a database specified
by time. However, these works do not consider the individual exhibition period of each item. The exhibition
period of an item is the time duration from the partition when this item starts to appear in the transaction
database to the partition when this item no longer exists [2]. That is, the exhibition period is the time duration
when the item is purchased. Hence these works cannot be effectively applied to a temporal transaction database,
such as a publication database, where the exhibition periods of the items are different from one to another. As a
result, the concept of general temporal association rules has been proposed where the items are allowed to have
different exhibition periods, and their supports are made in accordance with their exhibition periods [8]. The
accompanying mining measures, support and confidence, have been reformulated to reflect this new mining
model. Also, new mining algorithms were presented for the general temporal association rules in transaction
databases such as Progressive Partition Miner (PPM) [8], Segmented Progressive Filter (SPF) [12 - 15]. On the

Egyptian Computer Science Journal Vol.30 No3 September 2008

 2

other hand, other algorithms have been proposed for mining temporal association rules with numerical attributes
such as the TAR algorithm [9].

As a matter of fact, temporal databases are often appended by adding new transactions. Hence, the
previously discovered rules have to be maintained by discarding the rules that become insignificant and
including new valid ones. Currently, some algorithms are proposed for the incremental mining of temporal
association rules with numerical attributes [10]. However, the incremental mining of temporal transaction
databases is not as fortunate. Moreover, the incremental temporal mining algorithms with numerical attributes
can not be easily adoptable to the transaction database because the problem terms are mainly different. For
example, itemsets, support and confidence are used in transaction database while base cubes, density and
strength are used with numerical attributes. In this paper, the Incremental Temporal Association Rules Mining
(ITARM) is proposed. It is used to maintain temporal frequent itemsets after the temporal transaction database
has been updated. The proposed algorithm employs the skeleton of the incremental procedure of the Sliding-
Window Filtering algorithm (SWF) [11].

For the rest of the paper, Section 2 gives a description of some preliminaries in temporal association rules
mining. Section 3 provides a review of some related work. Section 4 presents the proposed algorithm ITARM in
detail. The performance of the proposed algorithm is empirically evaluated in Section 5 whereas Section 6
concludes our work.

2. Preliminaries

This section presents some preliminaries to facilitate the presentation of the proposed algorithm. For a given
temporal database DB, let n be the number of partitions with a time granularity, such as month, quarter, year.
dbs,e

 denotes the part of the transaction database formed by a continuous region from partition Ps to partition Pe

and

e

sh
hP || |db| es, where dbs,e

 DB and |Ph| is the number of transaction in the partition Ph. An item ys,e is

termed as a temporal item of a given item y, meaning that Ps is the starting partition of y and Pe is the ending
partition of y [8, 12].

Example 1: Figure 1 shows a publication database DB containing the transaction data from January 2007 to
February 2007. The number of transactions recorded in March is the incremental database db. The original
database DB is segmented into two partitions P1 and P2 in accordance with the “month” granularity and db
contains one partition P3. The partial database db2,3

 (DB db) consists of partitions P2 and P3. The
publication date of each item is shown on the right side of Figure 1. It is worth mentioning that, in the
publication database, each item usually has the same cut-off date of the item exhibition period. A temporal item
E2, 3 denotes that the exhibition period of E2,3 is from the beginning time of partition P2 to the end time of
partition P3.

 Transaction Database Item information

 Date TID Transactions Item
Publication

Date

D
B

 (
or

ig
in

al
 d

at
ab

as
e)

P1
Jan
07

T1 B D

db
1,

 3

 A Jan – 2001

T2 B C D B Apr – 2002

T3 B C C Jul – 2003

T4 A D D Aug – 2006

P2
Feb
07

T5 B C E

db
2,

 3

 E Feb – 2007

T6 D E F Mar – 2007

T7 A B C
T8 C D E

db
 (

in
cr

em
en

t)

P3
Mar
07

T9 B C E F

db
3,

 3

T10 B F
T11 A D
T12 B D F

Figure 1. An illustrative transaction database where the items have individual exhibition periods.

An itemset xs,e
 is called a maximal Temporal Itemset (TI) in a partial database db s,e

 if s is the latest starting
partition number of all items belonging to x in the temporal database and e is the earliest ending partition number

Egyptian Computer Science Journal Vol.30 No3 September 2008

 3

of the items belonging to x [8,12]. In this case, (s, e) is referred to as the Maximal Common exhibition Period
(MCP) of the itemset x and it is denoted by MCP(x). For example, as shown in Figure 1, itemset DE2,3

 is a
maximal temporal itemset, whereas DE3,3 is not a maximal temporal itemset because MCP(D)=(1,3) and
MCP(E)=(2,3) hence MCP(DE)=(2,3). A temporal itemset zs,e is called a temporal Sub-Itemsets (SI) of a
maximal temporal itemset xs,e

 if z x [13]. For example, the maximal temporal itemset BDE2,3 has the sub-
itemsets {B2,3, D2,3, E2,3, BD2,3, BE2,3, DE2,3}. The relative support of a temporal itemset x is given by the
following equation:

||

|T} x|db {T|
)(x supp

)(

MCP(x)
MCP(x)

xMCPdb

Where the numerator indicates the number of transactions in the partial database dbs,e that contain x. The general
temporal association rule is defined as an implication in the form (X Y)MCP(XY) with the following support and
confidence:

supp ((X Y) MCP(XY)) = supp ((X Y)MCP(XY))

||

|T} yx,|db {T|
)y) ((x supp where

)(

MCP(xy)
MCP(x)

xyMCPdb

)) ((X supp

)) ((X supp
) (X conf

MCP(XY)

)(
)(

XYMCP
XYMCP Y

Y

The general temporal association rule is termed to be frequent within its MCP if and only if its support is not

smaller than the minimum support threshold (min_sup), and its confidence is not smaller than the minimum
confidence needed (min_conf) [2]. Consequently, the problem of mining general temporal association can be
decomposed into the following three steps [8, 13]:

1. Generate all frequent maximal temporal itemsets (TIs) with their support values.
2. Generate the support values of all corresponding temporal sub-itemsets (SIs) of frequent TIs.
3. Generate all temporal association rules that satisfy min_conf using the frequent TIs and/or SIs.

3. Related Work

Several algorithms are proposed for mining temporal association rules. Most of these algorithms are based
on dividing the temporal transaction database into several partitions according to the time granularity imposed
then, mining temporal association rules by finding frequent temporal itemsets within these partitions.

Among these algorithms, Lee et al. proposed the PPM algorithm to discover general temporal association
rules in a publication database [8]. The basic idea of PPM is to first partition the publication database in light of
exhibition periods of items and then progressively accumulate the occurrence count of each candidate 2-itemset
based on the intrinsic partitioning characteristics. The PPM algorithm is designed to employ a filtering threshold
in each partition to early prune out those cumulatively infrequent 2-itemsets. Also, it employs the scan reduction
technique to reduce the number of database scans depending on the feature that the number of candidate 2-
itemsets generated by PPM is very close to the number of frequent 2-itemsets.

Also, the Segmented Progressive Filter algorithm (SPF) is proposed for mining temporal association rules
where the exhibition periods of the items are allowed to be different from one to another [12, 13]. The algorithm
consists of two procedures: the first procedure segments the database into sub-databases in such a way that item
in each sub-database will have either the common starting time or the common ending time. Then, for each sub-
database, the second procedure progressively filters candidate 2-itemsets with cumulative filtering thresholds
either forward or backward in time. This feature allows SPF of adopting the scan reduction technique by
generating all candidate k-itemsets from candidate 2-itemsets directly. Then, these candidates are transformed to
TI’s and the corresponding SI’s are generated. Finally, the database is scanned once to determine all frequent
TI’s and SI’s.

Moreover, Huang et al. devised the TWo end AssocIation miNer algorithm (Twain) to give more precise
frequent exhibition periods of frequent temporal itemsets [2]. Twain employs the start time and the end time of
each item to provide precise frequent exhibition period. It generates candidate 2-itemsets with their Maximal
Frequent Common exhibition Periods (MFCPs) while progressively handling itemsets from one partition to
another. Along with one scan of the database, Twain can generate frequent 2-itemsets directly according to the
cumulative filtering threshold. Then, it adopts the scan reduction technique to generate all frequent k-itemsets
from the generated frequent 2-itemsets.

Egyptian Computer Science Journal Vol.30 No3 September 2008

 4

Inputs:
 DB, db, C2

 DB , n and min_sup
Output:
 L , C2

 DB+db // initially, L =, C2
 DB+db =

Algorithm:
1- Find the candidate 2-itemsets (C2

db) of db.
2- For each itemset X C2

DB
 If X C2

db then
 X.supportDB+db = X.supportDB + X.supportdb

 C2
 DB+db = C2

 DB+db {X}
 Remove X from C2

DB and C2
db

 // adding the remaining itemsets to C2
 DB+db

 C2
 DB+db = C2

 DB+db C2
DB C2

db

 3- // Filtering candidate 2-itemsets
 For each itemset X C2

 DB+db

)||sup*min_ (X.support If

.
dbDB

n

startxm
mP

 Remove X from C2
 DB+db

4- Initialize C DB+db = C2
 DB+db , k=2

 While (Ck
 DB+db ≠) //candidates generations

 Ck+1
 DB+db = Ck

 DB+db × Ck
 DB+db

 // where × is the Apriori join operator
 C DB+db = C DB+db Ck+1

 DB+db
 k = k +1
5- Initialize TI = and SI=
 // Generation of Candidate TI’s
 For each itemset X C DB+db
 TI = TI {X MCP(X)}
 // Generation of candidate SI’s
 For each itemset X MCP(X) TI
 SX ={Z MCP(X) | Z X}
 SI = SI SX
6- For p=1 to n
 For each itemset X s,e (TI SI)
 If s<=p and e >=n then

 X s,e.support = X s,e .support + X s,e .supportp
 For each itemset X s,e (TI SI)
 if (X s,e.support ≥ min_supp × | db s,e |) then
 L= L { X s,e }

4. Proposed Algorithm

In this section, the proposed algorithm will be described in details. The main objective of the proposed

algorithm is to maintain temporal frequent itemsets after the temporal transaction database has been updated.
The algorithm employs the skeleton of the incremental procedure of the Sliding-Window Filtering algorithm
(SWF) [11]. The idea of SWF is similar to temporal mining algorithms idea such as PPM, SPF and Twain. All
of these algorithms are similar in partitioning the temporal database according to a time granularity and
generating the candidate 2-itemsets. They require two database scans: the first for generating candidate 2-
itemsets and the second for checking candidate k-itemsets generated directly from candidate 2-itemsets.

Figure 2. The ITARM algorithm.

The proposed algorithm depends on storing only candidate 2-itemsets generated from the previous mining

process with their support counts instead of storing all the previously found frequent itemsets. Its main idea is
based on updating these candidates and utilizing the scan reduction technique to find new frequent itemsets with
only one database scan. In the traditional approach, re-running a temporal mining algorithm costs at least two
database scans. One of the important features of the proposed algorithm is to reduce the number of database
scans required for the updating process. The steps of the ITARM algorithm are shown in Figure 2 and Table 1
shows the meaning of various symbols used. First, the algorithm finds the candidate 2-itemsets of the increment
database. Second, it updates the counts of the stored candidate 2-itemsets with the counts of the candidate 2-
itemsets of the increment database. That is, the support counts of the common itemsets are summed while the
counts of remaining itemsets are kept as it is. In the third step, a relative minimum support count is used to filter

Egyptian Computer Science Journal Vol.30 No3 September 2008

 5

the candidates in order to employ the scan reduction technique. In the fourth step, the algorithm applies the scan
reduction technique by generating all candidate k-itemsets from candidate (k-1)-itemsets directly. Then, these
candidates are transformed to temporal itemsets and the corresponding sub-itemsets are generated based on these
temporal itemsets in the fifth step. Finally, the frequent temporal itemsets and sub-itemsets can be determined by
scanning the updated database only once. Example 2 shows an example to illustrate how the ITARM algorithm
works.

Example 2: Recall the transaction database shown in Figure 1, where the transaction database DB is assumed to
be segmented into two partitions P1 and P2 according to the month time granularity from January 2007 to
February 2007. Suppose that min_sup= 30% and min_conf = 75%.

Figure 3.a shows the candidate 2-itemsets that are obtained from a previous temporal mining process using a

temporal association rules mining algorithm. The proposed algorithm first finds the candidate 2-itemsets of the
increment database with their support counts. The results are also shown in Figure 3.b. Then, the algorithm
begins to determine the candidate 2-itemsets of the updated database by updating the support counts of the
candidate 2-itemsets of both the original and the increment databases. Figure 4 shows the new candidate 2-
itemsets after the proposed algorithm updates the support counts of BC to be 5 and CE to be 3. Each candidate
itemset has two attributes: the start and the count attributes. The start attribute indicates the start partition that
itemset occurs and the count attribute indicates the support count from the start partition to the end partition.
Then, a filtering process is performed to determine new candidate 2-itemsets which are those itemsets that have
support count equal to or greater than the relative minimum support count. For example, the itemset BC occurs

from P1 to P3. Its relative minimum support count is equal to [min_sup * 3
m=1 |Pm|] = [12 × 30%] = 4 where 12

is the number of transactions from P1 to P3. This item has a support count greater than relative support count (5
> 4) hence it will be in the new candidate 2-itemsets. Note that although the itemset BD appears in two
transactions of P1 and in one transaction of P3, its final count is one not three as shown in Figure 4. This is
because these counts are not the total support counts over the whole database. It is just relative counts employed
to be able to utilize the scan reduction technique. However, the real support counts are computed for all itemsets
of all sizes in the database scan.

Table 1: The list of symbols used in the proposed Algorithm

Symbol Meaning

n The number of partitions
DB The original database
db The increment database
DB + db The updated database
min_sup The minimum support
C2

 DB The candidate 2-itemsets in DB

C2
 db The candidate 2-itemsets in db

C2
 DB+db The new candidate 2-itemsets in DB + db

C DB+db The candidate itemsets of all sizes in DB + db

L The set of frequent itemsets in DB + db
X An itemset
X.start The starting partition number of x

X.support
The number of transactions containing X in the
database

X.supportDB The number of transactions containing X in DB

X.supportdb The number of transactions containing X in db

X.supportDB+db The number of transactions containing X in DB + db

X.supportp The number of transactions containing X in partition p

|Pm| The number of transactions in partition m
SX The set of all subsets of a given temporal itemset

Figure 4 shows the new candidate 2-itemsets BC, BF and CE. The scan reduction technique is then applied

to the new candidate 2-itemsets to generate high-level candidates. However in our case, no more candidates are
produced. Then, these candidates are transformed to temporal itemsets (TI’s) and sub-temporal itemsets (SI’s)
by calculating the maximal common exhibition period of the items that appear in each itemset. For example, the
itemset CE consists of two items C and E. Since MCP(C)=(1,3) and MCP (E)=(2,3) so the MCP(CE)=(2,3).
Hence, the TI will be CE2,3 as shown in Figure 5 and the corresponding SI's are generated (C2,3 and E2,3) as
shown in Figure 6. After that, the proposed algorithm scans the updated database to calculate the support counts
of all TI's and SI's as shown in Figure 7. Figure 8 shows the new frequent temporal itemsets in the updated
database.

Egyptian Computer Science Journal Vol.30 No3 September 2008

 6

candidate 2-itemsets in DB candidate 2-itemsets in db
P1 + P2 P3

C2 Start count C2 start count
BC 1 4 AD 3 1
CE 2 2 BC 3 1
DE 2 2 BD 3 1

 BE 3 1
 (a)

 BF 3 3
 CE 3 1
 CF 3 1
 DF 3 1
 EF 3 1

Update candidate 2-itemsets in DB+db
P1 + P2+P3

C2 Start Count Relative Support
AD 3 1 (4 × 30%) = 2
BC 1 5 (12 × 30%) = 4
BD 3 1 (4 × 30%) = 2
BE 3 1 (4 × 30%) = 2
BF 3 3 (4 × 30%) = 2
CE 2 3 (8 × 30%) = 3
CF 3 1 (4 × 30%) = 2
DE 2 2 (8 × 30%) = 3
DF 3 1 (4 × 30%) = 2
EF 3 1 (4 × 30%) = 2

 (b)
Figure 3. (a) Candidate 2-itemsets in DB

(b) Candidate 2-itemsets in db
Figure 4. Update candidate 2-itemsets in DB+db

Generate Temporal Itemsets in DB+db

Itemset
B C

MCP(BC) TI’s
start end Start end

BC 1 3 1 3 (1,3) BC1,3

Itemset
B F

MCP(BF) TI’s
start end Start end

BF 1 3 3 3 (3,3) BF3,3

Itemset
C E

MCP(BF) TI’s
start end Start end

CE 1 3 2 3 (2,3) CE2,3

The Sub-temporal Itemsets
in DB+db

TI’s SI’s

BC1,3
B1,3
C1,3

BF3,3
B3,3
F3,3

CE2,3
C2,3
E2,3

Figure 5. Generate temporal itemsets in DB+db Figure 6. Generate sub-temporal itemsets in DB+db

Scanning the updated database for TI’s and SI’s
Candidate Itemsets Counts Relative support

SI’s

B1,3 8 (12 × 30%) = 4
C1,3 6 (12 × 30%) = 4
B3,3 3 (4 × 30%) = 2
F3,3 3 (4 × 30%) = 2
C2,3 4 (8 × 30%) = 3
E2,3 4 (8 × 30%) = 3

TI’s

BC1,3 5 (12 × 30%) = 4
BF3,3 3 (4 × 30%) = 2
CE2,3 3 (8 × 30%) = 3

The Frequent temporal Itemsets in DB+db
Frequent Itemsets Counts

L1

B1,3 8
C1,3 6
B3,3 3
F3,3 3
C2,3 4
E2,3 4

L2
BC1,3 5
BF3,3 3
CE2,3 3

Figure 7. Update the support counts of temporal & sub-
temporal itemsets

Figure 8. The frequent temporal itemsets in DB+db

In practice, the incremental algorithm is not invoked every time a transaction is added to the database.
However, it is invoked after a non-trivial number of transactions are added. In our case, the proposed algorithm
is invoked when no more transactions can be recorded in the imposed time granularity (e.g. current month).
However, it can be easily adapted to handle the problem of extending a given partition several times.
Sometimes, the increment database transactions are recorded in the same time granularity of the last partition of
the original database (e.g. the same month). Our algorithm can deal with this situation by storing the candidate
2-itemsets of the last partition of the original database separated from the candidate 2-itemsets of the other
partitions. By this way, the algorithm does not cost more candidates to be stored. However, it is just a separation
process of the candidates. When the algorithm is invoked, it first decides whether the increment database will be
added to the last partition or it will be treated as a new partition.

5. Experimental Results

In this section, a performance comparison of the proposed algorithm with some other temporal algorithms is

presented. The comparison is conducted with the SPF and Twain algorithms as they are recent algorithms for
mining general temporal association rules. The comparisons are evaluated from different aspects including: run
time, minimum support, original database size and increment database size. All the experiments are performed
on a 1.8 GHz Intel Core 2 Duo PC machine with 1 Gigabytes main memory, running on Microsoft Windows XP
Professional and all the programs are coded in C#.

5.1. Dataset

The experiments were performed on a publication database using the synthetic data used in the experimental
results of the previously mining algorithms introduced in [2, 8, 12, 13]. In essence, a publication database is a
set of transactions where each transaction T is a set of items of which each item contains an individual exhibition

Egyptian Computer Science Journal Vol.30 No3 September 2008

 7

period. For the simplicity of presentation, the notation [Tx - Iy - Dz – dr (Nm – Ln - Po)] is used to represent a
dataset in which x is the average size of the transactions, y is the average size of maximal potentially frequent
itemsets, z is the number of transactions in the original database (in thousands), r is the number of transactions in
the increment database (in thousands), m is the number of distinct items (in thousands), n is the number of
maximal potentially frequent itemsets (in thousands), and o is the number of partitions.

5.2. Performance Evaluation

In the First experiment, several datasets are used to investigate the run time of the proposed algorithm
comparing with the other two algorithms by varying the minimum support from 0.1% to 1%. The experimental
results on various datasets are shown in Figures 9, 10 and 11 with different sizes of the original database 50k,
100k and 150k respectively. Also, Figure 12 and Figure 13 show the performance of the proposed algorithm for
various values of m and n on the dataset T10-I4-D100-d20. Note that no matter what combination of different
parameters is, the proposed algorithm performs significantly better than the other two algorithms in terms of the
run time. This is due to the scan reduction achieved by the proposed algorithm where it needs only one database
scan to perform the update while both the SPF and Twain algorithms needs two database scans to perform the
update.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

T10 - I4 - D50 - d10 (N10-L2-P12)

 SPF
 Twain
 Proposed Algorithm

R
u

n
 t

im
e

in
 s

ec
o

n
d

s

Minimum support (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
40

60

80

100

120

140

160

180

200

220

240

260

280

300

T10 - I4 - D100 - d20 (N10-L2-P12)

 SPF
 Twain
 Proposed Algorithm

R
u

n
 t

im
e

in
 s

ec
o

n
d

s

Minimum support (%)

Figure 9. The run time under various minimum support Figure 10. The run time under various minimum support

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100

150

200

250

300

350

400

450

500

T10 - I4 - D150 - d30 (N10-L2-P12)

 SPF
 Twain
 Proposed Algorithm

R
u

n
 t

im
e

 in
 s

ec
o

n
d

s

Minimum support (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
40

80

120

160

200

240

280

320

360

400

T10 - I4 - D100 - d20 (N20-L2-P12)

 SPF
 Twain
 Proposed Algorithm

R
u

n
 t

im
e

in
 s

ec
o

n
d

s

Minimum support (%)

Figure 11. The run time under various minimum support Figure 12. The run time under various minimum support

Egyptian Computer Science Journal Vol.30 No3 September 2008

 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50

100

150

200

250

300

350

400

450

500

550

600

650

T10 - I4 - D100 - d20 (N20-L4-P12)

 SPF
 Twain
 Proposed Algorithm

R
u

n
 t

im
e

in
 s

ec
o

n
d

s

Minimum support (%)

Figure 13. The run time under various minimum support

From these Figures, it can be noted that the margin grows as the minimum support decreases. This is due to
the large number of frequent itemsets produced with the low support thresholds while this number decreases
with high support thresholds. Figure 14 shows the time needed by each algorithm to generate all the candidate
itemsets. It can be seen from the Figure that the proposed algorithm reduces significantly the time needed to
generate the candidate itemsets with respect to the other two algorithms. In addition, Figure 15 shows the
speedup ratio achieved by the proposed algorithm with respect to SPF and Twain algorithms. The proposed
algorithm reaches to a speedup ratio up to 1.33 faster than the SPF algorithm and 1.23 faster than the Twain
algorithm.

Moreover, two different experiments are designed to investigate the scalability of the proposed algorithm
against different sizes of both the original and the increment databases. Three different minimum support
thresholds are considered in these experiments: 0.3%, 0.5% and 1%. Figure 16 shows the scale-up performance
of the proposed algorithm as the size of the original database increases while the size of the increment database
is fixed. Also, Figure 17 shows the scalability of the algorithm by varying the size of the increment database. It
can be noticed that the run time of the proposed algorithm increases linearly as the number of transactions in the
database increases. This shows that the proposed algorithm can utilize the information carried from the previous
mining well and can incrementally generate frequent itemsets efficiently.

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

120

140

160

T
im

e
(S

ec
o

n
d

s)

Minimum support (%)

 SPF
 Twain
 ITARM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

S
p

ee
d

u
p

 R
a

ti
o

Minimum support (%)

 SPF/Proposed Alg.
 Twain/Proposed Alg.

Figure 14. The time needed to generate candidate itemsets Figure 15. Speedup ratio

Egyptian Computer Science Journal Vol.30 No3 September 2008

 9

20 40 60 80 100 120 140
0

50

100

150

200

 0.3%
 0.5%
 1%

R
u

n
 t

im
e

 in
 s

e
co

n
d

s

|DB| transaction number (k)

0 10 20 30 40 50 60

40

60

80

100

120

140

160

180

200

T10 - I4 - D100 - dx

 0.3%
 0.5%
 1%

R
u

n
 t

im
e

 in
 s

e
c

o
n

d
s

|db| transaction number (k)

Figure 16. Scalability with the number of transactions in DB Figure 17. Scalability with the number of transactions in
db

6. Conclusion

The concept of temporal association rule (TAR) has been introduced in order to solve the problem of
handling time series by including time expressions into association rules. We have presented an algorithm called
ITARM for updating temporal association rules in the transaction database. The proposed algorithm reduces the
time needed for generating new candidates by storing candidate 2-itemsets. It presents a technique to update the
previously generated candidates instead of re-generating them from scratch. The experiments show a significant
improvement over the traditional approach of mining the whole updated database. In all experiments, the
proposed algorithm consistently outperforms SPF and TWAIN in terms of run time. Moreover, the experiments
also show that the proposed algorithm is scalable and can work with large databases.

References

[1] Qiankun Zhao, and Sourav S. Bhowmick, “Association Rule Mining: A Survey,” Technical Report,
Center for Advanced Information Systems (CAIS), Nanyang Technological University, Singapore,
2003.

[2] Jen-Wei Huang, Bi-Ru Dai, and Ming-Syan Chen, “Twain: Two-End Association Miner with Precise
Frequent Exhibition Periods,” In the ACM Transactions on Knowledge Discovery from Data, Volume
1, Number 2, Article 8, August 2007.

[3] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad, “A Tree Projection Algorithm for Generation of
Frequent Item Sets,” In the Journal of Parallel and Distributed Computing, Volume 61, Number 3, pp.
350-371, March 2001.

[4] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining Frequent Patterns Without Candidate Generation,” In
Proceedings of the ACM-SIGMOD International Conference on Management of Data, Dallas, Texas,
USA, pp. 1-12, May 2000.

[5] Gosta Grahne, and Jianfei Zhu, "Fast Algorithms for Frequent Itemset Mining Using FP-Trees," In the
IEEE Transactions on Knowledge and Data Engineering, Volume 17, Number 10, pp. 1347-1362,
October 2005.

[6] Hui Ning, Haifeng Yuan, and Shugang Chen, “Temporal Association Rules in Mining Method,” In
Proceedings of the 1st International Multi-Symposiums on Computer and Computational Sciences
(IMSCCS'06), Zhejiang, China, Volume 2, pp. 739-742, June 2006.

[7] Yingjiu Li, Peng Ning, Xiaoyang Sean Wang, and Sushil Jajodia, "Discovering Calendar-Based
Temporal Association Rules," In Proceedings of the 8th International Symposium on Temporal
Representation and Reasoning, Cividale del Friuli, Italy, pp. 111-118, June 2001.

[8] Chang-Hung Lee, Ming-Syan Chen, and Cheng-Ru Lin, “Progressive Partition Miner: An Efficient
Algorithm for Mining General Temporal Association Rules,” In the IEEE Transaction on Knowledge
and Data Engineering, Volume 15, Number 4, pp. 1004-1017, July/August 2003.

Egyptian Computer Science Journal Vol.30 No3 September 2008

 10

[9] Wei Wang, Jiong Yang, and Richard Muntz, “TAR: Temporal Association Rules on Evolving
Numerical Attributes,” In Proceedings of the 17th International Conference on Data Engineering
(ICDE01), Heidelberg, Germany, pp. 283-292, April 2001.

[10] Vincent Ng, Stephen Chan, Derek Lau, and Cheung Man Ying, "Incremental Mining for Temporal
Association Rules for Crime Pattern Discoveries," In Proceedings of the 18th Australasian Database
Conference (ADC2007), Ballarat, Victoria, Australia, pp. 123 - 132 , January 2007.

[11] Chang-Hung Lee, Cheng-Ru Lin, and Ming-Syan Chen, “Sliding-Window Filtering: An Efficient
Algorithm for Incremental Mining,” In Proceedings of the 10th International Conference on
Information and Knowledge Management, Atlanta, Georgia, USA, pp. 263-270, November 2001.

[12] Junheng-Huang, and Wang-Wei, “Efficient Algorithm for Mining Temporal Association Rule,” In the
International Journal of Computer Science and Network Security (IJCSNS), Volume 7, Number 4, pp.
268-271, April 2007.

[13] Cheng-Yue Chang, Ming-Syan Chen, and Chang-Hung Lee, “Mining General Temporal Association
Rules for Items with Different Exhibition Periods” In Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM’02), Maebashi City, Japan, pp. 59-66, December 2002.

[14] Abdullah Uz Tansel, and Susan P. Imberman, “Discovery of Association Rules in Temporal
Databases,” In Proceedings of the 4th International Conference on Information Technology (ITNG'07),
Las Vegas, Nevada, USA, pp. 371-376, April 2007.

[15] Hui Ning, Haifeng Yuan, and Shugang Chen, “Temporal Association Rules in Mining Method,” In
Proceedings of the 1st International Multi-Symposiums on Computer and Computational Sciences
(IMSCCS'06), Zhejiang, China, Volume 2, pp. 739-742, June 2006.

